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A method for fitting of background-based curves is described whereas, with it’s aid, the peak- 

positions and areas in fitted spectrum sought, are easily located.

Wie bereits gezeigt werden konnte, gelingt unter 
Einsatz der Synchrotronstrahlung die direkte Re­
gistrierung schnell ablaufender Umordnungen am 
Kollagenmolekül. Die Anzeige erfolgt durch Kurz- 
zeitbeugungsspektren, die Änderungen der 67 nm 
Langperiode wiedergeben [1]. Hierdurch gelingt 
sowohl die Simulierung und röntgenographische Er­
fassung plötzlich einsetzender klinisch relevanter 
Faserstörungen als auch das Studium schnell ab­
laufender mechanochemischer Prozesse am Kolla­
genmolekül.

Zur genauen Auswertung der Peakorte und 
-flächen der ersten 12 Ordnungen dieses Klein- 
winkelreflexes ist eine Glättung und Anpassung der 
untergrundbehafteten Kurven erforderlich. Eine 
Darstellung des Untergrundes durch ein Polynom 
bzw. eine e-Funktion mit einem Polynom im Expo­
nenten lieferte für dieses Problem nur bedingt 
brauchbare Ergebnisse. Insbesondere konnte der 
steile Anstieg der Intensität der Untergrundstreuung 
zum Primärstrahl hin nicht befriedigend dargestellt 
werden. Ferner erwies sich der Versuch, alle eine 
Meßwertbildung beeinflussenden Störgrößen zu 
analysieren und mathematisch nachzubilden, als 
undurchführbar. Deswegen mußte empirisch eine 
Untergrundkurve gesucht werden, die superponiert 
mit den als Gaußkurven angenommenen Peaks die 
experimentell erhaltenen Werte am besten approxi­
miert.

Die große Zahl gleichzeitig zu variierender Para­
meter machte es erforderlich, eine Großrechen-
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anlage einzusetzen. Hierzu wurde das Programm 
NLSQA von Deuflhard und Apostolescu [2] mit fol­
gendem Ansatz benutzt:

+ ß  +  ocs - exp

mit den Symbolen: 

a0 = Amplitude
<r0 = Halbwertsbreite }■ des Primärstrahls 
x0 = Ort des Maximums 
ocs =  Amplitude 
(7$ = Halbwertsbreite 
x s — Ort des Maximums 
ß  =  Konstante 
t = Kanalnummer (Abszisse des Spektrums).

Dabei beschreibt der erste Term den prinzipiellen 
Verlauf des Untergrunds in Form einer Lorentz- 
Kurve. Die beiden anderen Terme berücksichtigen 
Störungen unbekannter Natur, die z. B. verursacht 
sein können durch Streuvorgänge am Kollimator­
system und an Inhomogenitäten bzw. durch Ab­
weichungen der Response-Funktion des Zählers von 
einer Konstanten.

Die einzelnen Peaks des Spektrums (Abb. 1) wer­
den zunächst noch als Gauß-Kurven dargestellt, 
deren Maxima zuerst in einem festen Abstand Ax 
voneinander angenommen wurden.

Damit evtl. kleine Nichtlinearitäten, die an den 
Enden des Zähldrahtes des verwendeten ortsemp-
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einer apparatur­
bedingten Störung
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Abb. 1. a) Beispiel eines Röntgenspektrums an einer nativen Kollagenfaser aus menschlicher Beugesehne, b) Dasselbe 
Spektrum nach Untergrundsubtraktion. Synchrotronstrahlung: 3,3 GeV, 50 mA; Expositionszeit: 30 sec. Kleinwinkel- 
kamera X 13 am Speicherring DORIS (DESY-Hamburg). (+: Meßdaten: — : angepaßte Kurve)
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findlichen Detektors auftreten können, nicht die An­
passung global verschlechtern, wurden die Posi­
tionen der Peaks am Rande freigegeben. Für das 
untergrundfreie Kleinwinkelspektrum erhält man 
damit (für das Beispiel in Abb. 1) die Darstellung:

(t -  (x0 + x 2))2
2 a*
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Dabei bedeuten:

Öd = Amplitude des /-ten Peaks;
Xi =  Abstand des i-ten Peaks von x0;
Oi = Halbwertsbreite des i-ten Peaks;
A x =  fester Abstand der Peaks untereinander; 
x0 = Ort des Reflexes 0-ter Ordnung.

Die registrierte Gesamtkurve läßt sich dann dar­
stellen als:

/ ( 0 * / x ( 0  +/* (0 = / ( * .0  •
Zur Anpassung wird die spezielle Zielfunktion T (x) 
mit Hilfe des Gauß-Newton-Verfahrens [2] mini­
miert: m

T (x)  := ,
i  —1

wobei gi (x) : = f ( x ,  ti) -  ; / = 1 ,..., m, dabei sind 
} \  die Meßwerte an den Orten ti und x  der Vek­
tor der Kurvenparameter (x0, . . . ,  oc0, . . . ,  <x2, . . . ,  
oc12, . . . , x 0).

Methodik

Das verwendete Programm NLSQA ist eine Rea­
lisierung des iterativen Gauß-Newton-Algorithmus 
zur nichtlinearen Regression, die sich durch beson­
dere Eigenschaften auszeichnet: Das Verfahren ge­
langt auch für vergleichsweise schlechte Startdaten 
noch zur Konvergenz durch eine den Konvergenzbe­
reich erweiternde Dämpfungsstrategie. -  Auch wenn 
einzelne der Parameter aus den Daten nicht mehr 
zuverlässig bestimmt werden können, liefert das 
Verfahren für die übrigen korrekte Ergebnisse („nu­
merische Rangentscheidung“).

Trotz der Größenordnung des Problems (ca. 
200 Meßpunkte und ca. 25 Parameter) benötigt das 
Verfahren für die Anpassung der ersten Kurve aus 
einer Reihe zeitlich aufeinander folgender Mes­
sungen ~  7 -10  sec, für jede folgende < 1 sec Re­
chenzeit.

Wegen der großen Menge der anfallenden Daten 
wurde ein Programm zur interaktiven Startdatener- 
zeugung erarbeitet, womit die Meßdatenauswertung 
nahezu vollständig automatisiert ist.

Die Rechnungen wurden auf der Anlage IBM 
370/168 des Rechenzentrums der Universität durch­
geführt.

Ausblick

Ein neuer Ansatzpunkt für die Analyse ergibt 
sich, wenn man davon ausgeht, daß die Kollagen- 
struktur als Realisation eines „schwach stationären 
Systems“ [3] angesehen werden kann, dessen 
Fouriertransformierte das Röntgenbeugungsspek- 
trum ist.

Dies bedeutet, daß innerhalb des Volumens, das-, 
vom Röntgenstrahl erfaßt wird und damit zur Ent­
stehung des Beugungsdiagramms beiträgt, der stati­
stische Zustand in jedem Volumenelement derselbe 
ist. Man kann nun zeigen, daß die Maxima der 
Fouriertransformierten einer solchen Struktur die 
Form von Cauchy-Kurven (allgemeine Form y  =  
a x  +  b
---------- ) besitzen. Für a =  0 erhält man die symme-

c + x 2
trische Lorentz-Kurve, während es bei geeigneter 
Wahl des Parameters möglich sein sollte, auch die 
in manchen Fällen beobachteten asymmetrischen 
Peakformen zu erklären.
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